

# Anales del Instituto de Arte Americano e Investigaciones Estéticas "Mario J. Buschiazzo"

# ■ ARQUITECTURA TRADICIONAL DE TIERRA EN EUROPA: UN PATRIMONIO DE ENTRAMADO Y ENCESTADO, ADOBE, TAPIA Y PARED DE MANO

Gilberto Duarte Carlos, Mónica Alcindor y Mariana Correia

#### CÓMO CITAR ESTE ARTÍCULO:

Carlos, G. D., Alcindor, M. y Correia, M. (2018). Arquitectura tradicional de tierra en Europa: un patrimonio de entramado y encestado, adobe, tapia y pared de mano. *Anales del IAA*, 48(2), pp. 239-256. Recuperado de: http://www.iaa.fadu.uba.ar/ojs/index.php/anales/article/view/289/499

Anales es una revista periódica arbitrada que surgió en el año 1948 dentro del Instituto de Arte Americano e Investigaciones Estéticas "Mario J. Buschiazzo" (IAA). Publica trabajos originales vinculados a la historia de disciplinas como el urbanismo, la arquitectura y el diseño gráfico e industrial y, preferentemente, referidos a América Latina.

#### Contacto: iaa@fadu.uba.ar

\* Esta revista usa Open Journal Systems 2.4.0.0, un software libre para la gestión y la publicación de revistas desarrollado, soportado, y libremente distribuido por el Public Knowledge Project bajo Licencia Pública General GNU.

Anales is a peer refereed periodical which first appeared in 1948 in the IAA. The journal publishes original papers about the history of disciplines such as urban planning, architecture and graphic and industrial design, preferably related to Latin America.

#### Contact: iaa@fadu.uba.ar

\* This journal uses Open Journal Systems 2.4.0.0, which is free software for management and magazine publishing developed, supported, and freely distributed by the Public Knowledge Project under the GNU General Public License.

# ARQUITECTURA TRADICIONAL DE TIERRA EN EUROPA: UN PATRIMONIO DE ENTRAMADO Y ENCESTADO, ADOBE, TAPIA Y PARED DE MANO

TRADITIONAL EARTHEN ARCHITECTURE IN EUROPE: AN HERITAGE IN HALF-TIMBER WITH WATTLE AND DAUB. ADOBE. RAMMED EARTH AND COB

#### Gilberto Duarte Carlos\*, Mónica Alcindor\* y Mariana Correia\*

■ ■ El artículo presenta un estado del arte sobre el patrimonio arquitectónico de tierra en el territorio europeo. Tras las misiones llevadas a cabo en diversas regiones y países que permitieron entrevistar a especialistas regionales y encuestar a expertos internacionales, se determinaron las principales culturas constructivas tradicionales de tierra en la Unión Europea. Este manuscrito presenta los grandes grupos constructivos que constituyen el patrimonio de tierra dentro del territorio europeo: las "técnicas mixtas", constituidas por un entramado con relleno de encestado en su interior; el "adobe", unidades moldeadas de tierra y secadas al sol; la "tapia", hecha por compresión de tierra entre tapiales; y la "pared de mano", compuesta por capas superpuestas de tierra plástica. La investigación pretende exponer las cuatro grandes familias de culturas constructivas de tierra y sus variantes en el continente europeo, así como reflexionar sobre el futuro de este vulnerable patrimonio en vías de desaparición.

# PALABRAS CLAVE: Europa, construcción tradicional, adobe, tapia.

■ ■ This article presents a state of the art of the earthen architectural heritage, in the European territory. Through different missions to distinct regions and countries, and after various interviews with regional specialists and questionnaires made to international experts, the main European Union earthen traditional building cultures were determined. The article introduces the major constructive groups that are part of the earthen heritage in the European territory: the mixed techniques, constituted by half-timber with wattle and daub in its interior; the adobes which are earthen moulded units dried in the sun; the rammed earth made by compression of humid earth, between forms; and the cob composed by overlapping layers of a more plastic earth. The article also aims to expose examples of the four large families of earthen constructive cultures and their variants and intends to reflect on the future of this vulnerable heritage, which is disappearing very fast.

KEY WORDS: Europe, traditional building, adobe, rammed earth.

Este manuscrito forma parte de una investigación en curso del Centro de Investigación de Escola Superior Gallaecia (Ci- ESG, Portugal), que toma como punto de partida los resultados del proyecto Terra [In]cognita: Earthen Architecture in Europe (Proyecto N°2009-0758), financiado por la Unión Europea, en el marco del programa de Cultura 2007-2013.

<sup>\*</sup>Centro de Investigación de la Escola Superior Gallaecia (Ci-ESG).

#### Introducción

Tradicionalmente, la arquitectura de tierra en Europa suele asociarse principalmente a las áreas de influencia mediterránea. Sin embargo, una observación y un estudio más profundos comprueban la existencia de un extenso patrimonio, poco conocido, presente en todo el continente europeo. En el marco del proyecto *Terra [In]cognita: Earthen Architecture in Europe¹*, cuatro instituciones desarrollaron una extensa investigación para dar a conocer el estado del arte de la arquitectura de tierra en la Unión Europea (UE). Coordinado por la Ecole d'Avignon (Francia) y financiado por la UE, el poyecto desarrollado en el ámbito del Programa de Cultura 2007-2013 contó con socios como la Escola Superior Gallaecia (Portugal), la Universidad de Florencia (Italia) y la Universidad Politécnica de Valencia (España).

Los resultados arrojados por dicha investigación permitieron revelar sorprendentes hallazgos. Uno de ellos fue el reconocimiento de la tradición de los países localizados al norte y noreste europeo, con un clima agreste que, inicialmente, podría sugerir un escaso uso de las técnicas de tierra, al inferir cierta vulnerabilidad ante los climas gélidos de la región. Otra importante revelación fue la identificación de movimientos migratorios de trabajadores, que construían con tierra durante el siglo XIX y principios del XX.

#### Cartografía europea de la arquitectura de tierra

Una de las contribuciones más interesantes del proyecto consistió en la elaboración de una síntesis gráfica de la distribución geográfica de las principales técnicas tradicionales de tierra (Figura 1). La cartografía permitió tomar conciencia sobre la gran escala de extensión que presenta la arquitectura de tierra en el territorio europeo y su caracterización más representativa. La misma refleja el patrimonio vernáculo de tierra y su confección fue el resultado de la contribución de 50 autores que forman parte de 27 países de la Unión Europea. Se identificaron cuatro categorías de culturas constructivas de tierra: el adobe, la tapia, la técnica mixta del entramado y del encestado, y la pared de mano (Correia, Dipasquale y Mecca, 2011).

# Método de investigación

Previo a comenzar el trabajo se formularon una serie de criterios específicos para establecer qué tipo de patrimonio debía identificarse. En este sentido, es importante señalar dos criterios de selección definidos durante las misiones: el patrimonio identificado debía presentar más del 30% de su volumen edificado con técnicas de construcción con tierra, y además su ejecución debía ser previa a 1970.

El método de investigación empleado se basó en el uso de distintas técnicas de recolección de datos primarios (observación in situ, fotos, entrevistas semiestructuradas, cuestionarios) y datos secundarios (revisión de bibliografía local, regional, nacional, e internacional). Toda la correlación de datos, el análisis y la consecuente interpretación se realizó conforme a los procedimientos propios de la investigación cualitativa.

La investigación comenzó con la revisión de las fuentes bibliográficas locales. Dicha etapa permitió establecer una primera aproximación referencial de base, para luego poder

encauzar con mayor facilidad los relatos de los informantes. Previo a iniciar el trabajo de campo, se distribuyeron, en las instituciones identificadas, encuestas de preguntas cerradas para configurar el área de búsqueda en cada país, así como los informantes a contactar. Una vez en campo, la investigación se complementó con entrevistas semiestructuradas. Por último, se procedió a verificar la información suministrada mediante la inspección ocular *in situ* de la naturaleza de los edificios construidos con tierra.

Para una mayor facilidad interpretativa, la elaboración de las misiones dedicadas al trabajo de investigación de campo en el territorio de la Unión Europea fue subdividida, de modo genérico, en 7 grandes regiones conforme al criterio geográfico establecido al inicio del proyecto de investigación. Ello permitió el desarrollo de los contenidos que han servido de base para los resultados alcanzados, así como para el presente artículo. Las misiones se llevaron a cabo a partir de los siguientes itinerarios(1) Norte de Europa: Dinamarca, Suecia, Finlandia, Estonia, Letonia y Lituania; (2) Noroeste europeo: Irlanda, Reino Unido y el norte de Francia; (3) Europa Central Occidental: Países Bajos, Bélgica y Luxemburgo; (4) Europa Central: Alemania, Polonia, República Checa, Eslovaquia, Austria, Eslovenia, Hungría, Rumania; (6) Sudoeste europeo: Portugal, España y el sudoeste francés; y finalmente (7) Sudeste europeo: Italia, Bulgaria, Grecia, Chipre y Malta (Correia, Dipasquale y Mecca, 2011).

El número de informantes expertos en cada país fue variable, en ningún caso fue menor a 3 ni mayor a 30 colaboradores. Su participación permitió identificar y confirmar la ubicación del patrimonio arquitectónico de tierra existente en cada área. Los contactos de los expertos de los 27 países europeos registrados en el 2011 y el patrimonio identificado pueden consultarse en línea².

No obstante, la correlación de los ejemplos analizados en las misiones efectuadas junto con los informes de los especialistas consultados evidenció un muestreo significativo del universo estudiado. Este atlas es un trabajo innovador que aún se encuentra en la etapa en desarrollo. Por lo tanto, los editores del mapa esperan que esta iniciativa sea la primera de numerosas investigaciones que complementen la información faltante.

#### Técnicas tradicionales de tierra en el territorio europeo

Identificación, distribución y caracterización por región

El continente europeo revela técnicas constructivas tradicionales en las que se utiliza la tierra en sus componentes arquitectónicos. Este es el caso de las cubiertas construidas con tierra en la isla de Madeira, en Portugal, de los revoques de tierra apreciables en Suecia o de los muros edificados mediante técnicas mixtas, las cuales conforman los sistemas constructivos con mayor variedad de soluciones.

La ejecución de mampostería de adobe representa, al igual que a escala nacional, una distribución dispersa y fragmentada, con núcleos circunscritos o en segmentos a lo largo de cuencas hidrográficas, concretamente aquellas con suelos de aluvión ricos en sílice y feldespatos. Es posible reconocer cierta tendencia a la concentración del patrimonio de tierra junto a zonas litorales, con penetraciones asociadas a las respectivas cuencas o áreas de relieve más plano y deprimido (Mileto, Vegas, García Soriano y Cristini, 2015).

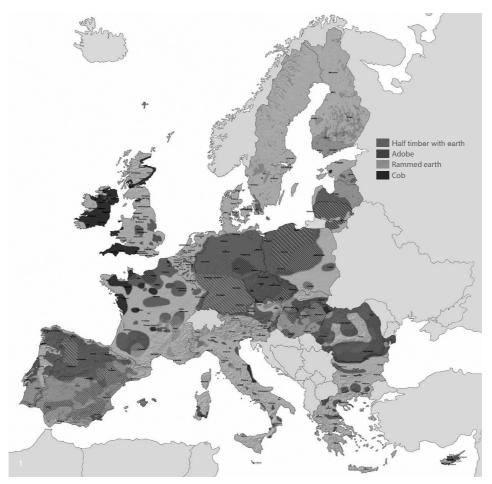
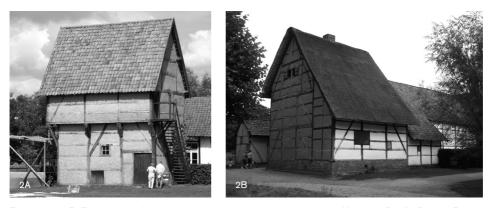




Figura 1: Mapa de las culturas constructivas de tierra en Europa. Estado del arte en 2011. Fuente: (Correia, Dipasquale y Mecca, 2011).



Figuras 2A y 2B: Técnica mixta de encestado integrado en estructura de madera, Museo de Bokrijk, Bélgica. Fuente: (Correia, 2010).

Tal como podía esperarse, la técnica constructiva del tapial presenta una distribución muy extensa, con áreas circunscritas de grandes dimensiones y significativamente homogéneas. Asociada a las áreas que permanecieron bajo la ocupación musulmana en Europa, previo a la consolidación de los reinos cristianos, la tapia tiene en la Península Ibérica su expresión más evidente y desarrollada. Sin embargo, su presencia es considerable en Europa Central y Oriental, evidenciándose un corredor que se extiende por la región sajona. En el extremo Noreste europeo se verifica la existencia de algunos casos de patrimonio de tapia, de dimensión significativa, particularmente en países con climas muy fríos como en Finlandia, Estonia y Letonia, donde es claramente la técnica constructiva dominante. Esto se explica también por la gran migración de Estonia y Letonia hacia Finlandia, durante el siglo XIX. Dichos migrantes llevaron el conocimiento del *know-how* constructivo en tapia (Correia, Dipasquale y Mecca, 2011).

Según el estudio efectuado, las paredes de encestado, que llenan la estructura de entramado, presentan áreas de destrucción de significativa extensión, y se evidencia una mayor concentración en el norte de los territorios. Algunas regiones, como la Península Ibérica, presentan un contrapunto geográfico en relación con las áreas con predominio de tapia. Se observa una gran extensión que se prolonga sin interrupciones entre las regiones Centro y Este, y que se expande desde Alemania, hacia el este, y abarca gran parte de Polonia y continúa hacia el sur, hasta el extremo de Rumania. A pesar de su dominio absoluto en el norte alemán y francés, el encestado fue, en general, tan utilizado como la tapia o el adobe en muchos territorios de Europa Central (Figuras 2A y 2B). Actualmente, es una de las técnicas mayormente empleadas en la restauración patrimonial en estas regiones (Correia, Carlos y Sousa, 2014).

La pared de mano, considerada más elemental que la tapia o el encestado, pudo constatarse como técnica de menor presencia y con una distribución más espaciada y circunscrita en el territorio europeo. Presenta una primera concentración de fragmentos dominantes sobre otras técnicas entre las islas británicas y la costa norte de Francia. Se trata de una zona cuyas construcciones se remontan a ocupaciones menos recientes, y por lo tanto pueden presentarse vestigios más arcaicos. Hacia el este, también se registran algunos casos aislados, que coexisten con otras técnicas predominantes, como puede apreciarse en el sur de Alemania, República Checa, Hungría, Rumania e Italia. La pared de mano es una técnica que ya no se utiliza en la actualidad, con excepción de Irlanda, Reino Unido y Francia (Correia, Dipasquale y Mecca, 2011).

## Especificidades de las culturas constructivas en Europa

#### Entramado y Encestado

Las técnicas mixtas constituyen una de las principales familias constructivas de las tecnologías que emplean a la tierra como material constitutivo, y se conforman por estructuras de madera, "entramados", rellenas en los intersticios por "encestados" (también denominados bahareques). En portugués, la técnica conocida como tabique, consiste en paredes de madera con relleno o recubrimiento de tierra; en francés el torchis puede integrar el sistema constructivo que constituye el colombage. Finalmente, en inglés, la estructura de madera rellena de tierra se denomina half-timber with earth y el encestado wattle and daub. Estos sistemas tienen diversas denominaciones a nivel local y varían según el área en que se encuentren. El ences-

tado consiste en una estructura portante de madera interconectada que se rellena con tierra arcillosa, que puede también contener fibras vegetales (Correia, 2008) (Figuras 3A y 3B).

Estas estructuras cumplen la función estructural principal y el encestado, sin bien contribuye de forma secundaria a la estabilidad de la estructura, asume la función de relleno. Su desempeño está asociado a su carácter envolvente, es decir, al cerramiento de separación entre el interior y el exterior con especial incidencia en la regulación higrotérmica. Esta combinación ampliamente difundida por toda Europa constituye la base del modelo cognitivo colectivo de lo que significa una ciudad medieval europea. Se trata de una de las más antiguas técnicas conocidas, con evidencia prehistórica tanto en la región norte como en la región central de Europa.

A grandes rasgos esta técnica puede clasificarse de diversas formas, conforme al modo de aplicar la tierra o al tipo de estructura base utilizada. En el primer caso existen dos grupos: el primero aplica la tierra en paneles, previamente elaborados, que luego se insertan dentro de la estructura de madera. El segundo, se caracteriza por aplicar directamente la tierra en la estructura, al carecer de un panel prefabricado. En este caso, las piezas se clasifican según la base que oficia de soporte de la tierra, ya sea mediante tablas de maderas separadas, que permiten la interconexión de la tierra al soporte, o bien a través de una red conformada por piezas de madera de pequeña sección bidireccional, que la tierra recubre (Correia, Dipasquale y Mecca, 2011).

Más allá de las distintas variantes de este sistema constructivo, cabe destacar que se trata de uno de los sistemas históricos que ofrece mayor resistencia a los movimientos sísmicos, ya que la ductilidad del entramado de madera y su carácter liviano, lo convierten en una técnica sumamente adecuada para responder a las solicitaciones horizontales. De hecho, una variante a destacar se encuentra en la región sur de Europa y se conoce como "pared Pombalina". Se trata de una estructura de madera con elementos dispuestos de tal modo que recrean la cruz de San Andrés y utilizan distintos materiales de relleno en las paredes interiores, uno de los cuales, es la tierra. También en la región sureste de Europa existía el mismo interés debido a su eficaz comportamiento estructural, ante las solicitaciones horizontales, pero en este caso se materializó con un lenguaje de clara influencia otomana (Mileto, Vegas, García Soriano y Cristini, 2015).

En la región de Escandinavia se observan los dos tipos. En Dinamarca, el relleno solía ejecutarse con adobes, a diferencia del sur de Suecia, que empleaba el otro sistema. En la región noroeste existen numerosos casos que combinan el entramado de madera y el encestado. En Francia se destacan en Normandía (Alta y Baja), Picardie, Champagne, y a lo largo del valle Marne, así como en Alsacia-Lorena. También en Bélgica, el escaso patrimonio todavía existente está fuertemente asociado a la arquitectura tradicional (Correia, Dipasquale y Mecca, 2011).

En la región central de Europa, el patrimonio de entramado de madera funciona como encofrado perdido y deja de trabajar cuando el muro está terminado.

# Adobe

Es una de las pocas técnicas constructivas de tierra cuya terminología es igual en castellano, portugués, inglés o francés. Su origen etimológico proviene del término egipcio thobe, tradu-

cido al árabe como *ottob* y convertido en las lenguas latinas como *adobe* (Achenza, Correia, y Guillaud, 2009). Su empleo es el resultado directo de la divulgación de la técnica durante el periodo musulmán en la Península Ibérica. La singularidad de su uso y significado hace que el término "adobe" sea utilizado amplia e históricamente en la Península Ibérica, y después del siglo XV en América Latina.

En el territorio europeo la tecnología asociada al adobe puede ser dividida en cinco grupos genéricos, todos ellos centrados en la ejecución de muros (Correia, Dipasquale y Mecca, 2011):

- La variante más común consiste en un sistema poco elaborado, constituido por paños de muro exclusivamente compuestos de hiladas de adobe.
- Tres de sus variantes están asociadas a la integración de otros elementos en el muro de adobe, con el objetivo de incrementar sus características mecánicas. Para ello, una de las soluciones comúnmente empleadas, consiste en alternar cada cierto número de hiladas capas de otros materiales de los muros que componen la envolvente del edificio. Cuando se busca mejorar la flexibilidad, estas capas son realizadas con cañizo, pero si el interés consiste en mejorar la compresión, las capas son realizadas con losas de piedra. Más allá de la alternancia de materiales en las hiladas, se procura reforzar aquellas partes del edificio que están sometidas a mayores solicitaciones con la introducción de ladrillos. Es el caso de la trabazón de los muros en esquina, los zócalos y la formación de vanos.
- La quinta variante, menos común, requiere el revestimiento externo de los muros con paneles de madera, que sustituye la capa de revoques de tierra o cal, que en los casos anteriores es indispensable.

A diferencia de las otras técnicas, la diversidad del adobe está menos circunscrita geográficamente, y existe una mayor combinación de soluciones en un mismo entorno (Mileto, Vegas, García Soriano y Cristini, 2015).

En los países con mayor desarrollo industrial se constata el reemplazo de esta tecnología por el empleo de ladrillo cocido, situación sumamente evidente en las regiones centrales de Europa, especialmente en las áreas de mayor productividad económica.

Como fue señalado anteriormente, esta técnica tiene un vínculo directo con la especificidad del suelo de cada localidad, aspecto que demuestra, en comparación con las restantes técnicas, una menor aptitud para rectificaciones compositivas de la materia original. Su distribución está directamente relacionada con los suelos de aluvión, específicamente con aquellos localizados en las cuencas hidrográficas de formación geológica más reciente. Hay otros tipos de adobes, como los de la región de Aveiro, en Portugal, constituidos por tierra más arenosa y cal. Tienen una gran durabilidad, e incluso se empleaban en la construcción de pozos (Figura 4).

Sin embargo, cabe destacar la densidad y continuidad de su distribución en el arco territorial entre Polonia y Rumania. Se constata la menor circunscripción fronteriza de las técnicas tradicionales, apoyada principalmente por los movimientos migratorios de algunas comunidades entre las áreas centrales y el este de Europa (Correia, Dipasquale y Mecca, 2011).

La utilización del adobe como relleno en las estructuras de entramados de madera es una de las combinaciones más recurrentes. Esta tendencia se encuentra, obviamente, relacionada con las culturas constructivas más propicias a la utilización de la madera y de las respectivas





Figuras 3A y 3B: Encestado en viviendas tradicionales, Museo de Bokrijk, Bélgica. Fuente: (Correia, 2010).



Figura 4: Pozos tradicionales de adobe, cerca de Oiã, Aveiro, Portugal. Fuente: (Correia, 2000).



Figura 5B: Vivienda histórica de tapia en Steninge, Suecia. Fuente: (Correia, 2010).



Figura 5A: Vivienda tradicional de tapia, en Telheiro, Reguengos de Monsaraz, Portugal. Fuente: (Correia, 1999).

técnicas de carpintería. Aun así, se puede encontrar en las áreas más vulnerables frente a los movimientos sísmicos, pues mejora el desempeño estructural de los edificios, principalmente los esfuerzos a tracción. El entramado de adobe en España es un buen ejemplo de este último sistema (Mileto, Vegas, García Soriano y Cristini, 2015). Respecto a esta variable, es posible identificar una tendencia de carácter geográfico. Una lectura general permite advertir, en las regiones del sudoeste europeo, un mayor empleo de revestimientos externos a base de morteros de cal (de igual modo que en la tapia), que ocultan los diferentes materiales y otorgan una apariencia uniforme a los edificios. En su vertiente opuesta, principalmente en las regiones centrales y orientales de Europa, una exposición externa de la madera es propia de los entramados, y sólo los espacios intersticiales rellenos con piezas de adobe son los que poseen un revestimiento de tierra, hecho que resulta en fachadas de mayor complejidad compositiva (Correia, Dipasquale y Mecca, 2011).

La combinación del adobe con hiladas de ladrillos cocidos, principalmente en los elementos de mayor esfuerzo estructural, representa una de las evoluciones más evidentes, concretamente en las áreas de carácter más urbano y de mayor densidad habitacional.

### Tapia

La tapia es la técnica de construcción de los muros monolíticos de tierra, comprimidos en encofrados deslizantes. La base del sistema, a modo genérico, consiste en un sistema constructivo de paredes estructurales constituidas por gruesas capas superpuestas (50-70 cm), ejecutadas a partir de la compactación de la tierra en el interior de paneles de madera modulares que se encuentran debidamente anclados. Esta técnica apisona la tierra húmeda sin inclusión de fibras (Figuras 5A y 5B).

El término "tapia" es traducido al portugués de Portugal como *taipa* y al portugués de Brasil como *taipa de pilão*. Presenta una gran similitud con el término árabe *Tabíya*. En francés, el término hace referencia al sistema de compresión y se denomina como *pisé*, así como en inglés *rammed earth* (Correia, 2007). Es frecuente, en el lenguaje popular español, confundir el elemento constructivo tapia con la técnica constructiva tapial.

Un primer análisis de la aplicación de la tapia en el territorio europeo confirma una coherencia en el proceso de ejecución. Dicho proceso aplicado aparenta implementar procedimientos similares, tanto desde el punto de vista de la preparación de la tierra como en el ciclo de ejecución de la obra. Si bien no se advierten grandes diferencias en lo referido a los principales procedimientos, la composición del sistema constructivo presenta un número significativo de variantes.

En el territorio europeo fueron identificadas aproximadamente 20 categorías que incluían a la tapia como el sistema constructivo más diversificado de Europa, entre sus congéneres tecnológicos. La mayoría de las variantes conjugan a la tapia con otros sistemas, o bien con técnicas mixtas en los pisos superiores, que le confieren un mejor desempeño estructural. Su alternancia con mamposterías y argamasas o revoques a base de cal o yeso, constituyen sus principales combinaciones (Correia, Dipasquale y Mecca, 2011).

La tendencia parece indicar la aplicación de sistemas constructivos más homogéneos en el sur, en lo que respecta a la ejecución del edificio y, particularmente, del heterogéneo elemento arquitectónico. En España, por ejemplo, se registra una mayor heterogeneidad constructiva de la tapia. Frecuentemente se emplean sistemas de construcción mixtos que conjugan mamposterías, trozos de maderas o secciones de tapia, en el mismo elemento (Mileto, Vegas, García Soriano y Cristini, 2015).

En la Península Ibérica, la difusión de esta técnica, al igual que ocurre con el adobe, es atribuida a los musulmanes. Su mayor desarrollo se encuentra, naturalmente, en las áreas que estuvieron bajo dominio árabe prolongado, como Alentejo y Algarve, en Portugal, y Andalucía en España. En esta región se utilizan por lo general dos planchas paralelas, de longitudes no menores a 150 cm, compuestas por un entablado horizontal de pino, con una altura mínima de 60 cm (Correia, 2007). Las planchas están generalmente trabadas y ancladas entre sí por elementos puntuales que se desmontan fácilmente, con un reducido impacto en la sección fabricada. Las argamasas, los revoques y las pinturas a base de cal forman parte de la cultura constructiva local asociada a esta técnica. Esto demuestra la importante difusión cultural entre las principales civilizaciones precedentes y la consolidación de su influencia a lo largo del tiempo.

En Francia, la designación de la técnica remite fundamentalmente al proceso de ejecución, en particular a la acción de compactación. Los resultados arribados indicarían la existencia de un proceso más intenso y elaborado, con un mayor número y variedad de módulos de encofrados. La presencia de la cal se vuelve más sutil, tanto como estabilizadora de la mezcla como para base de revestimiento. Por otra parte, el revoque de tierra, con mayor abundancia de sílice y feldespato, pasa a tener un papel más determinante, concretamente en los revestimientos aplicados. También se observa una composición con granulometrías de mayor dimensión, así como la ejecución de cimentaciones y zócalos de mayor dimensión, lo que determina una mayor resistencia estructural del sistema (Correia, 2008).

Dentro del trabajo de diferenciación tecnológica se verifica, de modo recurrente hacia el norte del continente, el crecimiento en altura de los edificios. Lógicamente, este hecho repercute en la configuración y la tipología asociada. En Portugal, España, Italia y Grecia es usual observar edificios de tapia, con una o dos plantas de altura. Por el contrario, en Alemania, se registran edificios que pueden llegar hasta los seis pisos, como en el caso de Weilburg, en Hessen (Correia, Dipasquale y Mecca, 2011).

La tipología dominante en el sur es mayoritariamente residencial, asociada a medios rurales de producción agrícola. Es frecuente la aplicación de la técnica en los principales edificios de apoyo a la actividad agrícola, como establos y graneros. La configuración es estrecha y alargada, de altura modesta, sin diferenciaciones geométricas relevantes. En algunas regiones de España y en las áreas centrales del territorio europeo se evidencia una mayor diversidad tipológica. Asimismo, se verifica su presencia en algunos núcleos urbanos, particularmente en las áreas históricas, confiriéndoles condiciones de preservación más favorables (Figura 6).

En el extremo noreste europeo, con condiciones climáticas más frías y húmedas, aún se reconocen graneros y establos de grandes dimensiones, de configuración bastante simple. Gran parte de estos ejemplos se pueden encontrar, con mayor presencia, en el interior de Lituania y Letonia, y más dispersos en Estonia y el sudoeste de Finlandia. En estas regiones es frecuente observar variaciones en la dimensión de las capas de la tapia aplicada, que se traduce en una mayor riqueza en el formato de los moldes. Dicha variabilidad seguramente se relaciona con el mayor desarrollo de las técnicas de carpintería de estas regiones (Correia, Dipasquale y Mecca, 2011).

La técnica de la tapia suele combinarse con elementos de madera, como los envolventes externos de entablado, colocados en la parte superior del edificio, con los cuales

se resuelve la transición entre las grandes cubiertas a dos aguas, revestidas con caña, tejas de maderas (shingles) o, más recientemente, con chapas de metal perfiladas (Correia, Dipasquale y Mecca, 2011). De este modo se constata que esta tecnología, a pesar de su menor representatividad actual, permanece como una solución válida en la tradición constructiva europea.

La arquitectura tradicional de tapia, en algunos países del área central como Bélgica, Luxemburgo o Países Bajos, es extremadamente escasa. Más allá de la documentación existente sobre el uso de técnicas tradicionales, los vestigios identificados son aislados y suelen encontrarse principalmente en restos arqueológicos o a través de reconstrucciones históricas de carácter pedagógico.

#### Pared de mano

La pared de mano es una de las técnicas de construcción con tierra que se registra de modo más disperso en el territorio europeo. Permite la construcción de paredes mediante una mezcla de tierra, con una mayor proporción de paja que la tierra apisonada, que en el caso europeo contiene poca o nula sustancia mineral (Figuras 7A y 7B). El término "pared de mano" en portugués se traduce como terra empilhada, en inglés se denomina cob y en francés bauge (Achenza, Correia y Guillaud, 2009).

Actualmente la mayor representatividad de esta técnica se encuentra en la región noroeste de Europa. De hecho, el rastreo más antiguo de su uso proviene de la misma región. Su aparición se evidenció primero en la zona anglo-normanda y a fines del siglo XII se introdujo en Irlanda (Correia, Dipasquale y Mecca, 2011). En la región norte de Europa su aparición data del siglo XIX. Procedente del Reino Unido, inicialmente se expandió en Dinamarca y luego se extendió en el territorio sueco.

Se han localizado otros procesos de ejecución en la región central europea (Alemania y Polonia), en los cuales el proceso constructivo se basa en la fabricación de capas formadas por grumos húmedos, que luego son presionadas mediante unas piezas de madera o incluso con los pies. Este sistema también puede observarse a lo largo del río Miño (que separa España y Portugal en el noroeste de la Península Ibérica), ya que durante la guerra de la restauración en 1640 se recurrió a la fortificación abaluartada que fue ejecutada con este sistema constructivo. Si bien en la actualidad no es una técnica vigente, es reconocida por su presencia en el patrimonio militar (Achenza, Correia y Guillaud, 2009). No obstante, la representatividad del patrimonio de pared de mano en la región sur es sumamente escasa.

Para establecer una clasificación de los tipos de pared de mano que se encuentran en Europa, el criterio se basa en distinguir la existencia o la ausencia de estructuras colaboradoras (Mileto, Vegas, García Soriano y Cristini, 2015). Existe, por un lado, el modelo más prístino, basado en la proyección, desde unos 30 cm de distancia, de bolas de arcilla mezcladas con paja en el que la forma final se adquiere cortando las partes sobrantes. A su vez, se observan variantes de este sistema que introducen elementos auxiliares, para controlar la forma de los muros durante el proceso de ejecución, mediante encofrados móviles o perdidos realizados con entramados de maderas de pequeña sección. Otra variante de este sistema consiste en agregar, en forma alternada, una hilera de ladrillo cocido cada vez que el muro alcanza cierta altura (Correia, 2008).





Figura 6: Intervención en vivienda de tapia, Castilla y León, España. Fuente: (Correia, 2011).



Figuras 7A y 7B: Vivienda con fachada lateral de pared de mano y fachada principal de entramado con encestado. Fuente: (Correia, 2010).

#### Consideraciones finales

## Algunas reflexiones

Más allá del creciente entusiasmo en el área, el trabajo de identificación y estudio de las técnicas tradicionales de tierra en Europa presenta informaciones heterogéneas y desequilibradas. Así pues, la escasa documentación existente no abarca el panorama geográfico ni tampoco el temporal, e impide confeccionar un cuadro comparativo continental a lo largo de la historia. El trabajo de campo inscripto en el marco del proyecto de investigación *Terra (in)cógnita* y las entrevistas locales realizadas fueron determinantes para abordar e identificar la distribución de las principales técnicas en el territorio europeo (Correia, Dipasquale y Mecca, 2011).

Las interpretaciones realizadas presentan un soporte coherente, basado en las asimetrías geográficas observadas, cuya representación gráfica produce una esquematización más conceptual. Pueden mencionarse tres aspectos fundamentales que resultan relevantes en la distribución geográfica observada:

- Independientemente de su aplicación en el pasado, las áreas europeas con mayores índices de producción industrial presentan registros muy pocos significativos de patrimonio de tierra, con particular énfasis en los países de la región central y en las fajas litorales de mayor movimiento portuario.
- Si se tienen en cuenta las excepciones mencionadas, la relación entre la geología, la pedología y la aplicación de las técnicas tradicionales de tierra constituye una de las mayores evidencias del variado patrimonio relevado, en cuanto aparenta ser un factor determinante tanto en la parte oriental como en la región sudoeste del continente.
- Las regiones más expuestas a la influencia de civilizaciones con tradiciones constructivas con tierra presentan un mayor enraizamiento y perpetuación de estos sistemas. Tanto la Península Ibérica como el corredor centro-oriental corroboran esta evidencia, que consolida un itinerario diversificado distinto de las actuales fronteras administrativas.

La calidad de su preservación debe entenderse conforme a las circunstancias culturales de su origen y no relacionarlas únicamente con el contexto actual. El caso de los *Open-air Museums*, en Europa central y en Escandinavia, es un buen ejemplo de una situación paradojal que precisa de una profunda reflexión, pues cumplen un importante rol pedagógico para las nuevas generaciones y al mismo tiempo conforman íconos de culturas constructivas que ya no existen.

Contrariamente, las técnicas tradicionales de edificaciones ubicadas al noreste carecen de autenticidad, debido a la combinación con sistemas industriales. No obstante, las comunidades locales todavía mantienen una gran vitalidad de ejecución. En estos casos, es viable anticipar la eventual evolución de las tipologías constructivas, ya que la tierra siempre tendrá un papel significativo.

Finalmente, cabe destacar que las regiones donde se identifican los casos más elaborados de arquitectura de tierra, así como las regiones con las culturas constructivas más activas, son, en general, áreas donde la actividad agrícola es predominante. La intervención de los edificios históricos refleja una tradición y un saber-hacer constructivo, que en muchas ocasiones ha desaparecido o está en vías de desaparecer, y se encuentra inmerso en un contexto



Figura 8: Viviendas tradicionales rurales en Países Bajos. Fuente: (Schopman, 2009).





Figuras 9A y 9B: Oficina con revoque de tierra, en Vekhyttan, Suecia. Fuente: (Correia, 2010).

cultural que difiere sustancialmente de aquel que prevalecía en su origen. La organización y construcción ya no se relaciona con las reglas de la sociedad tradicional que mantenía las culturas constructivas y conocía las condiciones geográficas y el contexto cultural, además de contar con el *know-how* de los maestros de construcción. Hoy en día, la arquitectura de tierra tiene que dar respuesta a la regulación administrativa europea y nacional, a los lobbies de los materiales de construcción industriales y a la conveniencia técnica global establecida por la sociedad.

La academia tomó conciencia de esta situación, particularmente en los últimos 15 años. Se incrementó la investigación y difusión de este conocimiento, a través de conferencias, seminarios, mesas redondas, oficinas prácticas y de proyecto, premios europeos y regionales, proyectos nacionales, transfronterizos o europeos y publicaciones internacionales, dedicadas a la conservación y desarrollo integrado de la arquitectura de tierra.

# ¿Cuál es el futuro del patrimonio de tierra?

Si se considera la incertidumbre que implica la globalización, y el riesgo de una rápida desaparición debido al cambio climático, ¿cuál es el futuro de este patrimonio?

En la actualidad, en el patrimonio tradicional pueden reconocerse diferentes escenarios. Por un lado, la instalación de los *Open-Air Museums y EcoMuseums*, que Escandinavia promovió durante el siglo XX, es una vía para conservar el diverso legado arquitectónico, enraizado a nivel regional, y difundirlo a las jóvenes generaciones. Esta iniciativa se expandió gradualmente por toda Europa. Hoy en día, países altamente industrializados, como es el caso de Bélgica, Países Bajos, Luxemburgo, Dinamarca y Suecia carecen de viviendas de tierra tradicionales, pues prácticamente han desaparecido. Para conocer el patrimonio tradicional de tierra, las familias visitan los últimos edificios que fueron transportados a los referidos museos (Figuras 2 y 3) o los pocos casos que todavía consiguen sobrevivir (Figuras 8, 9A y 9B), gracias a propietarios preocupados que se esfuerzan por conservar el patrimonio local.

Asimismo, las administraciones de los estados nacionales promueven otro enfoque para mantener el conocimiento de las técnicas tradicionales. Por ejemplo, los Países Bajos y Bélgica enseñan a los jóvenes, a través de la rehabilitación de escuelas y oficinas, las técnicas involucradas en los procesos de restauración. La administración francesa promueve, desde fines del siglo XIX, la construcción de edificios institucionales como escuelas talleres y el desarrollo de cursos en los ayuntamientos. Incluso en la actualidad, continúa vigente la formación y enseñanza internacional de la construcción de tierra y la restauración del patrimonio vernáculo (Guillaud, Moriset, Sánchez Muñoz y Sevillano Gutiérrez, 2014).

Aunque la arquitectura de tierra es uno de los tipos más vulnerables de patrimonio cultural, debe hacer frente a las presiones de la sociedad actual. La industrialización y la globalización inciden en la gradual desaparición de la diversidad patrimonial y de sus culturas constructivas. Tal es el caso en Europa Occidental. Actualmente, resulta difícil encontrar maestros tradicionales que todavía trabajen con arquitectura de tierra. En el centro y norte del continente ya ha fallecido la última generación de artesanos que dominaba diariamente estas técnicas. En el sudoeste europeo, los maestros que podían transmitir estos conocimientos dejaron hace décadas de trabajar activamente en la construcción con tierra (Correia, 2007). Ello deriva en la pérdida del conocimiento y en un futuro incierto de este patrimonio. ¿Será

que los museos de arquitectura tradicional de tierra son la última posibilidad para salvaguardar y conocer un patrimonio tan rico y diverso, que aún puede ser una respuesta eficaz a las premisas de sustentabilidad?

El cambio climático y los desastres naturales afectan más rápido a las comunidades vulnerables de los países en desarrollo. Estas habitan en zonas de riesgo, de deslizamientos de tierra o avalancha de lodo, como en Colombia, de ciclones como en Honduras y Nicaragua, de lava y cenizas de volcanes activos como en Guatemala, de sismos como en Chile y Perú, de inundaciones causadas por los monzones como en Mozambique, entre otras tantas. Aunque las poblaciones son resilientes, vuelven y reconstruyen sus viviendas. La mayoría de las veces lo logran, gracias al conocimiento intangible de sus culturas constructivas, pero no incorporan los refuerzos y las mejoras necesarias para enfrentar las crecientes amenazas climáticas y las catástrofes naturales. Es en esta relevante respuesta donde las universidades pueden contribuir.

La conservación del patrimonio cultural en riesgo de desaparición debe abordarse, de manera más asertiva, innovadora y efectiva. Es fundamental desarrollar investigaciones, acciones estratégicas y concretas, que puedan reactivar la dimensión intangible antes de que afecte su dimensión material. Es imprescindible valorar el mantenimiento del patrimonio de tierra, su preservación y la mejora de las culturas constructivas para hacer frente al cambio climático y a los vertiginosos cambios de la sociedad. De no ser así, será demasiado tarde para rescatar un patrimonio que ya no está vivo.

La conservación preventiva es también uno de los medios más efectivos de preservación a largo plazo. Dicha prevención puede integrar acciones de sensibilización del público joven, de educación para que las comunidades locales puedan valorar y monitorear el patrimonio cultural y de identificación proactiva de posibles patologías, entre otras tantas. Asimismo, la valoración de los modelos digitales con fines educativos para el estudio de posibles actividades futuras, o bien como componente turística, pueden mencionarse como otras vías de acción tendientes a preservar el patrimonio cultural.

#### **NOTAS**

- 1 La información referente al proyecto Terra [In]cognita: Earthen Architecture in Europe puede consultarse en: http://www.culture-terra-incognita.org.
- 2 La cartografía sobre culturas constructivas en la Unión Europea puede consultarse en: http://www.culture-terra-incognita.org/images/pdf/map.pdf.

#### REFERENCIAS BIBLIOGRÁFICAS

- Achenza, M., Correia, M., y Guillaud, H. (Eds.) (2009). Mediterra 2009: 1st Mediterranean Conference on Earth Architecture. Montefalcone, Italia: Edicom.
- Correia, M. (2007). Taipa no Alentejo / Rammed earth in Alentejo. Lisboa, Portugal: Argumentum.
- ------(2008). The 4 Techniques and the Building Materials. En Guillaud, H. et al. (Eds.). Terra Incognita Preserving
  European Earthen Architecture, N°2. (pp. 21-32). Bruselas, Bélgica: Culture Lab Editions and Argumentum.
- Correia, M., Dipasquale, L. y Mecca, S. (Comp.) (2011). Terra Europae. Earthen Architecture in the European Union. Pisa, Italia: Edizioni ETS.
- Correia, M., Carlos, G., y Sousa, S. (Comp.) (2014). Vernacular Heritage and Earthen Architecture: Contribution to Sustainable Development. London, United Kingdom: CRC Press / Balkema / Taylor & Francis Group.
- Guillaud, H., Moriset, S., Sánchez Muñoz, N. y Sevillano Gutiérrez, E. (Comp.) (2014). VERSUS: Lessons from Vernacular Heritage to Sustainable Architecture. Grenoble, France: ENSAG-CRAterre.
- Mileto, C., Vegas, F., García Soriano, L., y Cristini, V. (Coord.) (2015). Earthen Architecture: Past, Present and Future.
   Proceedings of VerSus 2014 | 2° MEDITERRA | 2° ResTAPIA. London United Kingdom: CRC Press / Balkema / Taylor & Francis Group.

#### Gilberto D. Carlos

Arquitecto por la Faculdade de Arquitetura da Universidade de Lisboa (FAUL). Doctor en Arquitectura por la Universidade da Coruña. Director del Máster Integrado en Arquitectura y Urbanismo de la Escola Superior Gallaecia (ESG). Profesor de Arquitectura y Coordinador Científico de investigación en el área de Arquitectura y Patrimonio. Desarrolla diferentes actividades de I+D+I apoyadas por la Unión Europea y por la Agencia para la Ciencia y Tecnología del Gobierno de Portugal.

Escola Superior Gallaecia Largo das Oliveiras, 4920-275, Vila Nova de Cerveira, Portugal

gilbertocarlos@esg.pt

#### Mónica Alcindor

Licenciada en Arquitectura por la Escuela Técnica Superior de Arquitectura de Sevilla (ETSA). Realizó estudios de Posgrado en Técnicas de intervención en Construcción, Restauración y Rehabilitación Arquitectónica (DEA). Doctora en Arquitectura por la Universidad Politécnica de Cataluña (UPC). Vice-directora y profesora del Máster Integrado de Arquitectura y Urbanismo de la Escola Superior Gallaecia (ESG). Fundadora del despacho de arquitectura "Bangolo" dedicado a rehabilitaciones de patrimonio rural y obra nueva con criterios bioclimáticos y recuperación de técnicas tradicionales.

Escola Superior Gallaecia Largo das Oliveiras, 4920-275, Vila Nova de Cerveira, Portugal

monicaalcindor@esg.pt

■ Arquitectura tradicional de tierra en Europa: un patrimonio de entramado y encestado, adobe, tapia y pared de mano

#### Mariana Correia

Magister y Licenciada en Arquitectura por la Faculdade de Arquitetura da Universidade de Lisboa (FAUL). Diploma del estudio de Posgrado de Arquitectura de Tierra (DPEA) dependiente del Centro Internacional de la Construcción con Tierra, Escuela Nacional Superior de Arquitectura de Grenoble (CRAterre-ENSAG).

Doctora en Arquitectura por la Universidad de Oxford. Presidente de la Escola Superior Gallaecia y Directora del Centro de Investigación de Escola Superior Gallaecia (Ci-ESG). Asesora de Patrimonio Mundial del Consejo Internacional de Monumentos y Sitios (ICOMOS). Desarrolla evaluaciones técnicas y científicas de candidaturas para obtener fondos de diferentes organizaciones internacionales. Presidente del Consejo Internacional de Monumentos y Sitios - International Scientífic Committee on Earthen Architectural Heritage (ICOMOS-ISCEAH). Especialista del Comité Internacional de Arquitectura Vernácula (CIAV), y miembro del Comité de Coordinación de PROTERRA.

Escola Superior Gallaecia Largo das Oliveiras, 4920-275 Vila Nova de Cerveira, Portugal

marianacorreia@esg.pt